
Development for Windows, Android and iOS

with Xamarin

Native cross platform



•Built by the engineers who brought Mono, 

Monotouch, Mono for Android (OSS)

•Ximian (2001)  Novell (2003)  Xamarin (2011)

•2013  V2

•2014  V3



•Xamarin Studio

 For Mac OS

 For Windows

•Visual Studio extensions

Android designer

 iOS designer

Connection to Mac OS for build/debug



Xamarin is an excellent product which has 
brought revolution in the field of software 
development.

It is the one which brings the .net and c# to 
both Android as well as ios. 

It is good to know that in spite being fully 
.net; it is capable in producing true 
Android as well as ios apps at the same 
point of time. 

This simply means that it holds the 
capability to fulfill the distribution 
requirements of the Google’s and ios own 
stores. 



Basically Xamarin is based on top of mono 

touch. When we say that, we mean that with it, 

it gets possible to develop both ios and Android 

apps along c#. The ios of Xamarin does full 

ahead of time compilation which leads to this 

interoperability. 

As the compilation happens, there is produced 

an ARM binary which makes it compatible with 

Apple’s app store. “Xamarin. Android” takes the 

benefit of Just in time compilation on the 

Android devices.



Reasons supporting the use of Xamarin for 

ios and Android cross-platform 

development:

Lesser to understand and learn: Any 

experienced .net/c# developer would feel 

working at home along Xamarin.

It makes one implement c# and does full 

implementation of the .net class libraries.

New users of Xamarin are not forced to learn 

much and they need to learn only the C# 

language and one core set of classes that could 

be effective on both the platforms.



It leads to faster time to market as Xamarin reduces the 

development time commendably. If you want a faster way 

of development, then it can be trusted with ease.

There are fewer bugs- As it involves less writing down of 

the codes, there are chances of lesser bugs along 

Xamarin. 



Dev Environment











WHO CARES ABOUT CROSS PLATFORM?

• 2013 App Economy was 68 billion USD according to DeveloperEconomics.com 

or roughly 10 USD per person

• 2016 estimated App Economy will be 143 billion USD according to 

DeveloperEconomics.com or roughly 20 USD per person

• Problem is that there is no OS monoply. What is a developer to do?



NO YOU CAN’T JUST TARGET ANDROID!

• Android dominates the phone market 81% shipping in Q3 2013 vs 13% iOS

• iOS dominates the tablet market 52% primary target is iPad only 28% 

primary target is Android



CROSS PLATFORM 
STRATEGIES



SILO APPROACH



SILO – WRITE APP ON EVERY TARGET

BENEFITS

• Full native experience

• Total access to the device as 

provided by SDK

• Share Web API

NEGATIVES

• Minimal re-use mostly on back end Web API

• Higher development cost from multiple teams 

(silo teams) or expensive multi-device 

developers

• Multiple codebases to maintain and extend

• One platform rules the others are subservient



TARGET BROWSER NOT OS

Web Site



HTML – WRITE APP USING MOBILE WEB

BENEFITS

• Provide consist experience regardless of 

target

• Cheap as it is just HTML

• Single codebase to maintain and extend

• No need for revenue sharing as no need to 

be in app stores

NEGATIVES

• User experience tends to be webish

and not native

• Need to still test and debug multiple 

targets

• Features tend to be a subset common to 

all targets



HTML – WRITE APP USING MOBILE WEB

• Tools

• HTML5

• jQuery Mobile

• Sencha Touch

• ASP.NET

• J2EE



TARGET DEVELOPER PLATFORM



MEAP – WRITE APP USING MOBILE ENTERPRISE 
APPLICATION PLATFORM

BENEFITS

• Provide consist experience regardless of 

target

• Cheaper as App is developed once for all 

targets

• Single codebase to maintain and extend

• Apps can be in app store if needed

NEGATIVES

• User experience tends to be webish and not 

native

• Need to still test and debug multiple targets 

even when MEAP only thing updated

• Features tend to be a subset common to all 

targets

• Vendor risk and lock in



MEAP – WRITE APP USING MOBILE ENTERPRISE 
APPLICATION PLATFORM

• Tools

• Phone Gap

• Dojo

• Sencha



MDAP – WRITE APP USING MOBILE DEVELOPMENT 
APPLICATION PLATFORM

• Strategies

• Tool generating target app

• Write app in single language and compile multiple targets



MDAP – WRITE APP USING MOBILE DEVELOPMENT 
APPLICATION PLATFORM

BENEFITS

• Provide consist experience 

regardless of target

• Single codebase to maintain and 

extend

• Hit a lot of targets at once

NEGATIVES

• Need to still test and debug multiple targets 

even when MEAP only thing updated

• Features tend to be a subset common to all 

targets

• Vendor risk and lock in

• May have to wait on new targets



MDAP – WRITE APP USING MOBILE DEVELOPMENT 
APPLICATION PLATFORM

• Tools

• Appcelerator

• Embarcadero

• Rhomobile

• RubyMotion

• Unity

• Xamarin



GOING CROSS PLATFORM 
USING .NET 



XAMARIN APPROACH



xamarin forms



•Coding in C#

•Taking advantage of the huge .NET ecosystem

 Tools

 .NET framework

 Libraries and components (community, OSS, NuGet, etc)

•Adding native iOS / Android components

•Access to native iOS / Android code



•Sharing the User Interface

Define once

Run on supported platforms

•Quick prototyping

 Try quickly how the UI works

•Evolve your application

 Start in Forms





What is full ahead of time compilation?

Full Ahead of time compilation or AOT is the 

feature of the mono runtime code generator. 

Mono time code generator works in two modes.

The first one is just-in-time compilation (also 

called JIT) and the second one is ahead of time 

compilation (also called AOT). 

AOT itself can be broken in two stages and the 

initial step calls for precompiling the assemblies.

The second step is automatic and in it, the Mono 

runtime loads any precompiled code that has 

been generated.



DEMOS



XAMARIN

BENEFITS

• Re-use .NET skills

• Leverage existing .NET technology

• JSON.NET

• OAUTH.NET

• SignalR

• High code re-use 80+%

• Tailor UI/UX to target

NEGATIVES

• Need to still test and debug multiple targets 

even when MEAP only thing updated

• Multiple codebase for UI

• No sharing of UI

• Vendor risk and lock in although Xamarin is a 

strategic partner for MS

• May have to wait on new targets like Android



XAMARIN FORMS APPROACH

Shared UI Code



XAMARIN + XAMARIN.FORMS

Quickly and easily build native user 

interfaces using shared code

Xamarin.Forms elements map to native 

controls and behaviors

Mix-and-match Xamarin.Forms with native 

APIs

Shared UI Code



PAGES

Content MasterDetail Navigation Tabbed Carousel



LAYOUTS

Stack Absolute Relative Grid ContentView ScrollView Frame



.NET AS A MDAP

• Visual Studio as development environment

• Xamarin to reach non-MS platforms

• Xamarin.Forms to share UI on iOS, Android, and Windows Phone

• Azure Mobile Services

• Security

• Data Services

• Notification

• TFS

• Xamarin Test Cloud



KEY TAKE AWAYS

• Strategies

• Silo – Pure Native

• Mobile Web – Web Apps

• MDAP – Target a Dev Tool

• Cross Platform is not theory or option. It is the new reality.

• .NET is a viable platform using MS on MS tech and Xamarin to reach non-MS 

tech (iOS, Android, Mac, Linux, Google Glass, etc.)



•Custom controls and renderers

Customize and Modify the rendering

•Use XAML / Data Binding

Decoupled patterns

Maximize code reuse

Maximize unit testing

•Animations



what else?



•Testing on hundreds of real devices

•Scripting the tests

•Getting feedback

 Screenshots (scripted)

Crash information

Call stack

…http://blog.xamarin.com/new-xamarin-test-cloud-features-2/



•Analytics platform

•Cross platform

http://blog.xamarin.com/monitoring-your-apps-with-xamarin-insights/



•Sharing code (“classic” Xamarin)

 Full native UI experience

•Sharing UI (Xamarin Forms)

 Some compromises

 Full native controls

 Ideal for prototyping / Iterative development

•http://xamarin.com/

http://xamarin.com/


•APPENDIX



• http://www.gartner.com/newsroom/id/3415117


